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A simple formula for ‘wave damping’ is derived, exact within the context of the 
proposed theory, namely: potential flow correct to second order in the wave amplitude 
and to leading order in U / c ,  where U is the drift velocity and c the wave celerity. The 
analysis is restricted to a two-dimensional problem although the extension to three 
dimensions seems possible. 

1. Introduction 
Ocean structures exposed to waves are excited by second-order forces and drift 

slowly in time. Viscous dissipation is very small, since it is proportional to drift velocity 
squared, and a second mechanism for damping has been analysed in the last ten years: 
the influence of drift velocity on the exciting forces that cause it. 

This effect is called ‘wave damping’, after Wichers (1982), and it has been shown 
that it is the dominant damping mechanism mainly in a high sea state. Wichers (1982) 
proposed a heuristic formula and Faltinsen (1988) formulated the exact problem under 
the following assumptions: potential flow correct to second order in the wave 
amplitude and to leading order in U / c ,  where U is the drift velocity and c the wave 
celerity. More recently, Sclavounos (1989) derived an asymptotic simplification of 
Faltinsen’s approach but, in any circumstance, the numerical computation is relatively 
complex, as discussed briefly in $2 of the present work. Few numerical results of this 
theory are known and two of them will be discussed here. 

In this paper it is shown that, in two dimensions, the exciting drift force, influenced 
by the drift velocity, is given in deep water by 

In (1) p is the water density, g is the acceleration due to gravity, A is the wave 
amplitude, c = w/K is the wave celerity, U is the drift velocity, we = w-KU is the 
‘frequency of encounter’ and R(.) is the reflection coefficient in the standard 
radiation-diffraction problem (namely, the one where the drift velocity is zerq.  
Formula (1) is exact within the context of the theory proposed by Faltinsen. 

As discussed at the end of $2, formula (1) was suggested by an argument based on 
the theory of wave groups in a moving medium, as expounded in Bretherton & Garret 
(1969) and Whitham (1974); its mathematical demonstration is given in $ 3  and $4 
presents a comparison between (1) and numerical results together with some concluding 
remarks. 

D(w; U )  = ;pgA2IR(w,)12[1-4u/c]. (1) 

2. Statement of the problem and some basic results 
Consider a two-dimensional body, placed in the plane ( y ,  z )  with z being the vertical 

axis positive upwards, moving in the positive y-direction with a forward speed U and 
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FIGURE 1.  Geometry and flow conditions in the moving system. 

exposed to a wave with frequency w ,  propagating from left to right. In the reference 
system moving with the forward speed U the observed frequency, named the 
'frequency of encounter', is given by the expression 

w,=w(l-U/c); c=g/w,  (2 4 
where c is the wave celerity. In this moving system one also observes a current from 
right to left, as shown in figure I ,  and for future reference the following wavenumbers 
are introduced here : 

K ,  = wi/g, K' = K,( 1 f. 2Ulc). (2 c) 
The forward velocity U corresponds, in an actual problem, to the drift velocity of the 

body under wave action and it is small compared with the wave celerity c.  Under this 
condition one can ignore terms of order (U/c)' and so K+ is the wavenumber of the 
incident wave, namely 

Kt = w 2 / g .  (2 4 
If g is the acceleration due to the gravity and A the wave amplitude, the potential of 

the incident wave, in the moving system, is given by the well-known expression 

(3) . g A  i K f g  - iw, t  ~ $ ~ ( y , z , r )  = -1-e e . 

In what follows the term e-'@ will be factored out and omitted, apart from a few 
occasions where it may clarify an expression. 

Suppose first the interaction between the body and the flow - Uj in the absence of 
waves and let U$,(y, z) be the related potential; the linear free-surface condition is 
given by a$,/az = u2 i32$,/2y2 and, since terms of order u2 are to be ignored, it reduces 
to the 'impermeable' condition a#,/az = 0. The potential U#,(y, z )  describes, then, 
the distortion caused on the incoming flow by the 'double body' immersed in an 
unbounded fluid; as a consequence of it the points S' shown in figure 1 are 'stagnation 
points' and since U V $ ,  + - Uj when I yI + GO one has 

w 

(4) 
aY 

Let q5&, z )  e-'"t be the perturbation caused on U$,(y, z )  by the action of the wave; 
indicates a variable related to the oscillatory problem when U + 0. The 

W Y ,  z ,  0 = U#,(y, z )  + &(y,  z )  e-@, ( 5  4 

P J Y I  z> = d i w e  $[,- uV$, V$u). ( 5  b) 

V$,(fb,O) = 0, - (* .o ,z)  a$, = -1. 

the subscript 
total potential can be written in the form 

and from Bernoulli's equation the oscillating pressure, linear in &, is given by 
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Denoting by n the normal to B pointing out of the fluid, the kinematic condition on 
the body surface B can be written in terms of the coefficients 

n2 = n-j; m, = - U(n - V) i3$s/i3y; 
ng = n. k ;  

n4 = yn, - zn, ; m4 = q- n, a#,Jaz + yt, a$,/ay] + ym, - zm, 

m, = - U ( n .  V) i3$s/i3z; ( 6 )  

and in terms of the generalized displacements (q j ,  ,; j = 2,3,4} in sway, heave and roll. 
If T(w,; U )  and R(w,; U )  are, respectively, the total transmission and reflection 
coefficients then, to leading order in (U/c ) ,  the potential &(y, z) satisfies the set of 
equations (see Faltinsen & Zhao 1989) 

V2$, = 0 in V ;  

4 

V$,-n = xqi,u(-io,nj+mj) in B ;  
j=2  

a#,/az+O for z+--co; 

T(w,; U)eiK'y eKfr; 
9,- -i@{ eiK+y K'r (Y +* a). e + R(w,; U )  e-iK-Y eK-z. 

The oscillatory fluid force coefficients can be defined by the expressions 

(7) 

withp,(y,z) given by (5b); notice that Pi,, includes both the exciting and reacting 
hydrodynamics forces, the latter normally expressed in terms of the added mass and 
radiation damping matrices; the expression on the right-hand side of (8) is a known 
result introduced by Ogilvie & Tuck (1969). 

The body's motion can be determined from its dynamic equations and fluid forces; 
if Mjl.  and Ci, are, respectively, the inertia and restoring matrices of the body, these 
equations can be written in the form 

(9 4 D .  31 = - w2Mj, + Cil, x Djl 41, u = p F j ,  ", 
I 

with the matrix Dj2 being symmetric; in this case the energy relation 

Im( x.9uYj,u) j = 0 (9 b) 

can be easily proven, with * denoting the complex conjugate. 
From (7) some basic conservation equations, of energy and linear momentum, can 

be deduced; to make more direct the exposition they will be stated in the following but 
are proven in the Appendix. 

The energy equation, similar to I T ( w ) ~ ~ + I R ( w ) ~ ~  = 1 in the standard problem, here 
takes the form 

and reduces to the standard expression when U = 0. The drift force, analogous to 
D(w) = &gA21R(o)l2, is given now by 

(lob) D(w; U )  = ipgA2[(1 -\T(w,; U)12)(l -4U/c)+IR(w,; U)l2]; 
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notice that, for convenience, the frequency w ,  as measured in the Earth-fixed system, 
has been used to describe the dependence of D(. ; U )  on the frequency. 

To this point no new result has been introduced and related expressions can be 
found, for instance, in Grue & Palm (1985). The set of equations (7), (8) and (9) must 
be solved to determine D(w; U )  by direct pressure integration on the body surface or 
else by using (lob). This is the route taken in Faltinsen & Zhao (1989), for example, 
and the numerical work is, in general, complex; one must first compute $s(y , z )  and 
later solve (7) with the relatively complicated free-surface boundary condition shown. 
However, as it will be seen next, a reasonably plausible assumption can be introduced 
and it discloses the argument that leads to formula (1). 

The basic idea is the following: once terms of order V are ignored the free surface 
becomes ‘impermeable’ for the potential $s(y ,  z )  and the interaction between the body 
and the incoming flow should not generate new waves; as a corollary, far-field 
observers detect only the interaction between the flow - Uj with the far-field waves 
and, using known results of propagation of wave groups in a moving medium, they are 
able to predict how this interaction takes place. 

To make this argument more explicit one may consider, initially, the problem (7) 
with U = 0, where the ratio of the transmitted to incident wave amplitudes is given by 
IT(w,)l. If the current is now ‘turned on’ and increases gradually from zero to its final 
value U,  far-field observers can follow the interaction between these waves and the 
current. From the theory it is known that such interaction depends only on the ratio 
U / c  and on the relative directions of the wave and current; but then the rates of 
increase of the incident and transmitted wave amplitudes are the same and so the 
transmission coefficient should remain constant as the flow intensity increases from 
zero to U. Using this result in the energy relation (10a) one obtains 

Now placing expression (11) into (lob), formula (1) can be derived directly; this 
simple result will be formally demonstrated in the following. 

3. Derivation of (11) 
The demonstration of formula (1) is, as seen above, a consequence of (1 1) ; in this 

section this latter expression will be derived. The technique to be used is based on 
Green’s identity and it is standard in hydrodynamics. 

In order to proceed one should consider first, as suggested at the end of the last 
section, problem (7) when U = 0; reserving the subscript to indicate the related 
variables, the potential cjhO(y, z )  satisfies the standard set of equations 

V2$o = 0 in V ;  

a$,/az= Ke$o in z = O ;  
4 

V$o . n = C q j , J  -iw, nj)  in B ;  

i3$,/az+O for z+--oo; 

j = 2  
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In this case the fluid force coefficients can be written as 

From the symmetry of Di, the identity 

C y j , u q j , o  = X F j , o q j , u  ( 1 2 4  
i i 

can be demonstrated; notice that (12d) is just one of several possible 'reciprocity 
relations' in a self-adjoint system. 

Consider now the equality V2q5u$o = V2q50q5u at every point of the fluid region V, 
bounded by the free surface F and the body B, and let Y be defined by the expression 

I- 

If the above equality is integrated in V and Green's theorem is used one obtains 

Using in this last integral the far-field expressions for q5u and q50, as shown in (7) and 
(12a), and recalling that K* = Ke(l +2U/c), see (2b), the following identity is derived: 

Introducing the notation 

one obtains, with the help of (Zb), 

By definition (s,(y, z) + $o( y, z )  when U+ 0 and since terms of order ( U / C ) ~  have 
been consistently ignored the difference r$u-q50 is of order U / c ;  one may state this 
point explicitly by writing 

(14) 

where the variations ('derivatives') 8$o and 6qj, ,  are of order 1. Placing these 
expressions in (13b), disregarding terms of order ( U / C ) ~  and observing that 
&( f co, z) = &( 

$U(Y, '1 = #O(Y, ')+('/') '$O(Y7 '17 

qj,u = qj,o+(u/c)'qj,o, 

co, 0) e2Kez, one obtains 

and so 9 = 0 since $s( y, z )  satisfies (4). 
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A similar result can be derived for Y .  In fact, observing that mj z O(U) ,  then to 
leading order in U / c  one has 

placing these expressions in (13a) one obtains, with the help of (12b) and ( 1 2 4 :  

From (13 c) it follows then that IR(w,; U)l = (1 - 2U/c) IR(w,)l and so (1 1) is obtained 
with the help of the energy equation (10a); this demonstrates formula (1). 

4. Numerical results and conclusions 
Few numerical results on wave damping are known and two of them will be 

discussed here. Faltinsen (1988) and Faltinsen & Zhao (1989), for example, analysed 
only one problem: a semicircle in deep water, as shown in figure 2. In this case 
the potential $s (y , z )  has a simple analytical expression (an uniform flow plus a 
y-dipole) and so only $,(y, z ,  t )  was computed. To use formula (1) the values of 
{D(w,); w,(d/g)’I2 = 0.05n}, for n = 10,. . . ,26, were taken from Faltinsen’s curve 
U =  0 and the values of IR(o,)12 were determined by linear interpolation. The 
agreement between Faltinsen’s numerical work and formula (1) is evident. 

In order to discuss the second result it is worthwhile to make a digression with 
respect to formula (1) that has interest in itself. In fact, observing that the drift force 
in the standard problem is given by D(w) = ;pgA2)R(w)l2, one can write (1) in the form 

D ( 0 ;  U )  = D(w,) [1-4(U/C)]. 

Now, disregarding terms of order ( U / C ) ~ ,  one has D(w,) = D(w) - (dD/dw) wU/c ,  
since we = w(1- U / c ) ;  it turns out then that the force D(w; U) can be written as 

(15) 

(c = g/w> 
D(w;  U )  = D(w) - B(w) U, 

Notice that the forcing function D(w; U )  has been decomposed into the drift force 
D(o)  for the standard problem plus a parcel - B(w) U,  proportional to the drift velocity 
U ;  for this reason the term B(w) is called the Lwave damping coefficient’. 

Wichers (1 982) proposed an expression for B(w) similar to (1 5) but without the term 
4(w/g) D(w) and his expression has been tested against numerical results in some simple 
configurations. 

In fact, Clark, Malenica & Molin (1992) compared numerical results for a vertical 
circular cylinder with Wichers’ expression, when the waves and forward speed are 
collinear. They observed a poor agreement and to improve the result they added, 
apparently by chance, the second term in (15). They then found an exact fit between 
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FIGURE 2. Numerical results obtained by Faltinsen (1988) compared with (1) for a semicircle 
restrained in a roll. Faltinsen: - .  - .  -, U/(gd)l/* = -0.032; -, U = 0 ;  ----, U(gd)1/2 = 0.032. 
Formula ( 1 ) :  0 .  

(1 5 )  and the numerical results. These authors reported, however, that the agreement 
was a little poorer when the cylinder is free to oscillate, a difference not supported by 
the present theoretical result. 

Clearly (1 5 )  has been proven in the context of a two-dimensional theory and one 
should not expect that it should be exact for a three-dimensional problem. However, 
the agreement in this particular case, and also in a very similar looking expression 
proposed by Clark et al. when the waves and speed are not collinear, seem to indicate 
that indeed an expression similar to ( 1 5 )  can be derived for a three-dimensional 
problem. 

The author acknowledges several suggestions made by an associate editor of JFM 
during the review of the paper; he is also indebted to some imaginary discussions with 
Professor C. C. Mei, from MIT. 

Appendix 

were stated without proof and used; they will be demonstrated here. 
In §2 of this work some of the more technical results, for example (loa) and ( lob ) ,  

A . l .  Derivation of (ZOa) 

Consider the equality $; V2$, = $u V2$; in V, with &(y, z )  being the solution of (7) ; 
by partial integration and Green’s theorem one has 

c (P? u qj, u - Fj, u 4; u)  + i(U/C) j- 
- s, 

[(a94/aY) l$u121 dB 
j F 

0 
- [(~$*U/3Y) 4u-  W r J / d Y )  m;2; dY. 
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Using (4), (9b)  and the far-field behaviour of (7) one obtains, after some algebra, 

(1-2( U/c) )  1 T(0, ; U)lZ + (1 + 2( U / c ) )  IR(0, ; u) 12 = 1 - 2( U/c ) .  (A 1 )  

Expression (10n) follows at once if terms of order ( V / C ) ~  are disregarded. 

A.2. Derivation of ( l o b )  
The potential @ ( y , z ,  t ) ,  defined in (5a) ,  can be written in the far field in the form 

@(Y,  2, t )  = - u y  + @&, z ,  0, 
(A 2 4  @,(y,z, t )  = i[#u(y,z) e-iwet+#;(y,z) eiwet], 

P(Y, Z, t )  = -p(a@~/at)+pu(a@tv/aY)-~piv@,i2--pgz 

with #,(y,z) being the solution of (7). The pressure is then given by 

(A 2b) 
and the free-surface displacement ~ ( y ,  t )  can be expressed, correct to leading order in 
the wave amplitude, as 

(A 2 4  T ( Y ,  r : )  = (i/g)(-aacP,/at+ ua@u/an,=o. 
Let ( * ) be the time-average operator; from momentum considerations (see, for 

instance, Maruo 1960 or Grue & Palm 1985) the steady drift force D(w; U )  is given by 

D(w; U )  = ( 2 ( - 0 O , t ) ) - ( 2 ( + m , t ) ) ,  ( A  3 4  
with 2 ( y ,  t )  defined as 

J --m 

In ( A  3 b)  v2, ?(y ,  z ,  r )  is the second-order particle velocity, a term that should apriori 
be considered in the present analysis; placing ( A  2b) and ( A  2c) into ( A  36) and 
disregarding terms of cubic order in the wave amplitude, one obtains 

Let A o ( y )  be the steady flux of mass (mass transport) through the section y in the 
standard problem, defined in (12a);  then 

With this notation and ignoring terms of order (U/c)' one can write, with the help 
of (A 2a)  

(2(u, 0 )  = - 2 U d o ( Y )  

From mass conservation one should expect dAo/dy = 0; in fact, for the transmitted 
wave one obtains the classical results A,( + 00) = ( c / ~ K ) ( K A ) ~  IT(wJ2, see, for 
instance, Dean & Eagleason (1965), while in the opposite limit it is not difficult to show 
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that do( - co) = ( c / ~ K ) ( K A ) ~  [ l  - lR(we)lz] = do( + co). So the first parcel in (A 5 )  has 
no contribution for the steady drift and will be ignored in the following. 

Using the far-field condition of (7) one obtains, when y +  co, 

= +pgA21T(we; U)l"1-4U/c),  

since K+ = d / g ,  see (2 c )  ; a similar analysis when y --f - 03 gives 

(d(-00, t ) )  = $gA2[(1 -4U/c)+IR(w,; U)12]. 

Placing (A 6) in (A 3a) one obtains (lob).  
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